S1. VSI and related MATLAB codes including sensitivity investigation

S1.1 VSI function

function [result] = fn_vsi(inside)
% This function calculates the VSI of the object represented as logical array named 'inside'

sizeInside=size(inside);

%Find the smallest xy-plane index
for i1=1:sizeInside(1,3)
 Px=(inside(:,:,i1)==1);%crosssection plane
 Np=sum(Px(:));
 if Np~=0
 zmin=i1;
 break
 end
end

%Find the largest xy-plane index
for i1=sizeInside(1,3):-1:1
 Px=(inside(:,:,i1)==1);%crosssection plane
 Np=sum(Px(:));
 if Np~=0
 zmax=i1;
 break
 end
end

num=0;
for z1=zmin+1:zmax
 Px=(inside(:,:,z1)==1);%crosssection plane
 Npxy=sum(Px(:));%number of voxels in crosssection plane
 num=num+Npxy*(z1-zmin);
end

%N: Total number of voxels
N=sum(sum(sum(inside)));
if N~=1
 result=exp(-2*num/(N*(N^(1/3)-1)));
else
 result=1;
end
end
S1.2 Sensitivity of VSI on discretization and size of cubes and spheres

S1.2.1 Sensitivity of VSI on discretization

Cubes

clear all
clc
close all

%%% Construct a 64x64x64 cube; Unit voxel length=8

[X,Y,Z]=meshgrid(8:8:64);
inside=(X>0)&(X<65)&(Y>0)&(Y<65)&(Z>0)&(Z<65);
C=zeros(size(X));
x=4:8:68;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=64 unit; unit voxel length=8 unit');

% Calculate VSI
VSI8=fn_vsi(inside)

%%% Construct a 64x64x64 cube; Unit voxel length=4

[X,Y,Z]=meshgrid(4:4:64);
inside=(X>0)&(X<65)&(Y>0)&(Y<65)&(Z>0)&(Z<65);
C=zeros(size(X));
x=2:4:66;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=64 unit; unit voxel length=4 unit');

% Calculate VSI
VSI16=fn_vsi(inside)

%%% Construct a 64x64x64 cube; Unit voxel length=2

[X,Y,Z]=meshgrid(2:2:64);
inside=(X>0)&(X<65)&(Y>0)&(Y<65)&(Z>0)&(Z<65);
C=zeros(size(X));
x=1:2:65;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=64 unit; unit voxel length=2 unit');

% Calculate VSI
VSI32=fn_vsi(inside)

%% Construct a 64x64x64 cube; Unit voxel length=1

[X,Y,Z]=meshgrid(1:64);
inside=(X>0)&(X<65)&(Y>0)&(Y<65)&(Z>0)&(Z<65);
C=zeros(size(X));
x=0.5:1:64.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=64 unit; unit voxel length=1 unit');

% Calculate VSI
VSI64=fn_vsi(inside)
Spheres

clear
close all
cle

%%% Construct a sphere with Radius=32 and Unit voxel=8
R1=32;
ufl=8; % Unit voxel length
[X,Y,Z]=meshgrid(-40:ufl:40);
R=sqrt(X.^2+Y.^2+Z.^2);
inside=R<R1;
C=zeros(size(X));
x=-44:ufl:44;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Unit voxel length=8 units; Diameter=7 voxels');

% Calculate VSI
VI=fn_vsi(inside)

%%% Construct a sphere with Radius=32 and Unit voxel length=4
% Use interpolation to construct the new sphere
clear x* y* z*
[xi,yi,zi] =meshgrid(-40:4:40,-40:4:40,-40:4:40);
vi1 = interp3(X,Y,Z,inside,xi,yi,zi,'linear');
vi1=(vi1>0);
x1=-42:4:42;
y1=x1;
z1=x1;
C1=zeros(size(xi));
plotCubes(x1,y1,z1,vi1,C1);

% Calculate VSI
VI2=fn_vsi(vi1)

%%% Construct a sphere with Radius=32 and Unit voxel length=2
% Use interpolation to construct the new sphere
clear x* y* z*
[xi,yi,zi] =meshgrid(-40:2:40,-40:2:40,-40:2:40);
vi2 = interp3(X,Y,Z,inside,xi,yi,zi,'linear');
vi2=(vi2>0);
x1=-41:2:41;
y1=x1;
z1=x1;
C1=zeros(size(xi));
plotCubes(x1,y1,z1,vi2,C1);

% Calculate VSI
VSI3=fn_vsi(vi2)

%% Construct a sphere with Radius=32 and Unit voxel length=1
% Use interpolation to construct the new sphere
clear x* y* z*
[xi,yi,zi] = meshgrid(-40:40,-40:40,-40:40);
vi3 = interp3(X,Y,Z,inside,xi,yi,zi,'linear');
vi3=(vi3>0);
x1=-40.5:40.5;
y1=x1;
z1=x1;
C1=zeros(size(xi));
plotCubes(x1,y1,z1,vi3,C1);

% Calculate VSI
VSI4=fn_vsi(vi3)
S1.2.1 Sensitivity of VSI on size

Cubes

clear
clc
close all

%% Construct a cube with side=4 unit; Unit voxel length=1
[X,Y,Z]=meshgrid(1:4);
inside=(X>0)&(X<5)&(Y>0)&(Y<5)&(Z>0)&(Z<5);
C=zeros(size(X));
x=0.5:1:4.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=4 unit; unit voxel length=1 unit');

% Calculate VSI
VSI4=fn_vsi(inside)

%% Construct a cube with a=8 and Unit voxel length=1
[X,Y,Z]=meshgrid(1:8);
inside=(X>0)&(X<9)&(Y>0)&(Y<9)&(Z>0)&(Z<9);
C=zeros(size(X));
x=0.5:1:8.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=8 unit; unit voxel length=1 unit');

% Calculate VSI
VSI8=fn_vsi(inside)

%% Construct a cube with a=16 and Unit voxel length=1
[X,Y,Z]=meshgrid(1:16);
inside=(X>0)&(X<17)&(Y>0)&(Y<17)&(Z>0)&(Z<17);
C=zeros(size(X));
x=0.5:1:16.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=16 unit; unit voxel length=1 unit');

% Calculate VSI
VSI16=fn_vsi(inside)

%%% Construct a 32x32x32 cube and Unit voxel length=1

[X,Y,Z]=meshgrid(1:32);
inside=(X>0)&(X<33)&(Y>0)&(Y<33)&(Z>0)&(Z<33);
C=zeros(size(X));
x=0.5:1:32.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=32 unit; unit voxel length=1 unit');

% Calculate VSI
VSI32=fn_vsi(inside)

%%% Construct a 64x64x64 cube and Unit voxel length=1

[X,Y,Z]=meshgrid(1:64);
inside=(X>0)&(X<65)&(Y>0)&(Y<65)&(Z>0)&(Z<65);
C=zeros(size(X));
x=0.5:1:64.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Cube edge length=64 unit; unit voxel length=1 unit');

% Calculate VSI
VSI64=fn_vsi(inside)
Spheres

clear
clc
close all

%% Construct a sphere with R=4 and Unit voxel=1
R1=4;
[X,Y,Z]=meshgrid(-20:20);
R=sqrt(X.^2+Y.^2+Z.^2);
inside=R<R1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Unit voxel length=1 units; Radius=4 voxels');

% Calculate VSI
VSI4=fn_vsi(inside)

%% Construct a sphere with R=8 and Unit voxel=1
clear

R1=8;
[X,Y,Z]=meshgrid(-20:20);
R=sqrt(X.^2+Y.^2+Z.^2);
inside=R<R1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Unit voxel length=1 units; Radius=8 voxels');

% Calculate VSI
VSI8=fn_vsi(inside)

%% Construct a sphere with R=16 and Unit voxel=1
clear

R1=16;
[X,Y,Z]=meshgrid(-20:20);
R=sqrt(X.^2+Y.^2+Z.^2);
inside=R<R1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Unit voxel length=1 units; R=16 voxels');
% Calculate VSI
VSI16=fn_vsi(inside)

%%% Construct a sphere with R=32 and Unit voxel=1
clear

R1=32;
[X,Y,Z]=meshgrid(-40:40);
R=sqrt(X.^2+Y.^2+Z.^2);
inside=R<R1;
C=zeros(size(X));
x=-40.5:40.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Unit voxel length=1 units; Radius=32 voxels');

% Calculate VSI
VSI32=fn_vsi(inside)

%%% Construct a sphere with R=64 and Unit voxel=1

R1=64;
[X,Y,Z]=meshgrid(-100:100);
R=sqrt(X.^2+Y.^2+Z.^2);
inside=R<R1;
C=zeros(size(X));
x=-100.5:100.5;
y=x;
z=x;
plotCubes(x,y,z,inside,C);
title('Unit voxel length=1 units; Radius=64 voxels');

% Calculate VSI
VSI64=fn_vsi(inside)
S1.3 VSI Codes for spreading of ellipsoids

clear
clc
close all

%% Construct an ellipsoid with (xc,yc,zc)=(0 0 0) (xr yr zr)=(4 4 32)
xr=4;yr=4;zr=32; %semi-axis lengths
[X,Y,Z]=meshgrid(-20:20,-20:20,1:20);
inside=((X.^2)/(xr^2))+((Y.^2)/(yr^2))+((Z.^2)/(zr^2))<1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=0.5:20.5;%Semi-ellipsoid
plotCubes(x,y,z,inside,C);
sum(sum(sum(inside)))%Show total number of voxels

% Calculate VSI
VSI1=fn_vsi(inside)

%% Construct an ellipsoid with (xc,yc,zc)=(0 0 0) (xr yr zr)=(5 5 17)
xr=5;yr=5;zr=17; %semi-axis lengths
[X,Y,Z]=meshgrid(-20:20,-20:20,1:20);
inside=((X.^2)/(xr^2))+((Y.^2)/(yr^2))+((Z.^2)/(zr^2))<1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=0.5:20.5;
plotCubes(x,y,z,inside,C);
sum(sum(sum(inside)))%Show total number of voxels
% Calculate VSI
VSI2=fn_vsi(inside)

%% Construct an ellipsoid with (xc,yc,zc)=(0 0 0) (xr yr zr)=(6 6 12)
xr=6;yr=6;zr=12; %semi-axis lengths
[X,Y,Z]=meshgrid(-20:20,-20:20,1:20);
inside=((X.^2)/(xr^2))+((Y.^2)/(yr^2))+((Z.^2)/(zr^2))<1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=0.5:20.5;
plotCubes(x,y,z,inside,C);
sum(sum(sum(inside)))%Show total number of voxels
% Calculate VSI
VSI3=fn_vsi(inside)

%% Construct an ellipsoid with (xc,yc,zc)=(0 0 0) (xr yr zr)=(7 7 9)
xr=7;yr=7;zr=9; %semi-axis lengths
\begin{verbatim}
[X,Y,Z]=meshgrid(-20:20,-20:20,1:20);
inside=((X.^2)/(xr^2))+((Y.^2)/(yr^2))+((Z.^2)/(zr^2))<1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=0.5:20.5;
plotCubes(x,y,z,inside,C);
sum(sum(sum(inside)))
%
\end{verbatim}

% Calculate VSI
VSI4=fn_vsi(inside)

%%% Construct an ellipsoid with (xc,yc,zc)=(0 0 0) (xr yr zr)=(8 8 7)
xr=8;yr=8;zr=7; %semi-axis lengths
[X,Y,Z]=meshgrid(-20:20,-20:20,1:20);
inside=((X.^2)/(xr^2))+((Y.^2)/(yr^2))+((Z.^2)/(zr^2))<1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=0.5:20.5;
plotCubes(x,y,z,inside,C);
sum(sum(sum(inside)))
%
\end{verbatim}

% Calculate VSI
VSI5=fn_vsi(inside)

%%% Construct an ellipsoid with (xc,yc,zc)=(0 0 0) (xr yr zr)=(9 9 6)
xr=9;yr=9;zr=6; %semi-axis lengths
[X,Y,Z]=meshgrid(-20:20,-20:20,1:20);
inside=((X.^2)/(xr^2))+((Y.^2)/(yr^2))+((Z.^2)/(zr^2))<1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=0.5:20.5;
plotCubes(x,y,z,inside,C);
sum(sum(sum(inside)))
%
\end{verbatim}

% Calculate VSI
VSI6=fn_vsi(inside)

%%% Construct an ellipsoid with (xc,yc,zc)=(0 0 0) (xr yr zr)=(10 10 5)
xr=10;yr=10;zr=5; %semi-axis lengths
[X,Y,Z]=meshgrid(-20:20,-20:20,1:20);
inside=((X.^2)/(xr^2))+((Y.^2)/(yr^2))+((Z.^2)/(zr^2))<1;
C=zeros(size(X));
x=-20.5:20.5;
y=x;
z=0.5:20.5;
plotCubes(x,y,z,inside,C);
sum(sum(sum(inside)))
% Calculate VSI
VSI7=fn_vsi(inside)

%% Construct an ellipsoid with (xc,yc,zc)=(0 0 0) (xr yr zr)=(11 11 4)

xr=11; yr=11; zr=4; %semi-axis lengths

[X,Y,Z]=meshgrid(-20:20,-20:20,1:20);

inside=((X.^2)/(xr^2))+((Y.^2)/(yr^2))+((Z.^2)/(zr^2))<1;

C=zeros(size(X));

x=-20.5:20.5;

y=x;

z=0.5:20.5;

plotCubes(x,y,z,inside,C);

sum(sum(sum(inside)))

% Calculate VSI
VSI8=fn_vsi(inside)
S1.4 VSI cell spreading codes

clear

close all;

clc

load cellInfoQae113apr17 %Includes filenames, file paths, and cell masks
cellInfo50(:,4:9)=[];

for ic1=1:50 %Cell counter

% [fname, fld] = uigetfile({'*.*'},'multiselect','on');
% fpath = [fld,fname]
fld=cellInfo50{ic1,1};
fname=cellInfo50{ic1,2};
BWc=cellInfo50{ic1,3};%Cell mask

% Load GFAP images and segment by percentage thresholding
% N is the number of selected files
n=size(fname);
Ns=n(1,2);
%Construct GFAP MIP image of cell of interest
for ij=1:Ns
 fnamen=fname(1,ij);
 fn=char(fnamen);
 II=importdata([fld,fn]);
 I(:,:,ij)=rgb2gray(II);
end
MIP=max(I,[],3);%Maximum intensity projection image. 3 is the DIM z.

% % Find the bounding box of the cell
IMIP=BWc.* (MIP>0); %IMIP is the MIP thresholded image
%figure;imshow(IMIP);
[y,x]=find(IMIP==1);%Cell is in [min(x) min(y) max(x) max(y)]
%Find the max(cell_width, cell_length)
Imw=max((max(x)-min(x)),(max(y)-min(y)));
Imwx=max(x)-min(x);
Imwy=max(y)-min(y);

% Slice thickness 1.13um : Olympus Fluoviewer Software
% File>Properties>Z dimension
sliceThickness=1.13; %unit is um
% Field of view File>Properties>X&Y dimension
FOV=317.13*317.13; %unit is um^2
szBWc=size(BWc);%# of pixels of the source image
unitXYDim=317.13/1024;=%.0.3097 um
unitZ2XY=round(sliceThickness/unitXYDim);%The ratio of Z to XY dimension
unitZDim=1.13/unitZ2XY;=%.0.2825 um

cellMaxXArea=0;%Maximum cross sectional area of the cell [um^2]
cellVolume=0;%Cell volume [um^3]
sliceCounter=0; % Cell slice number which has the highest Xsection area
for ij=1:Ns
 Im = I(:,:,ij);
 BWsr(:,:,ij)=(Im>0).*BWc;
 % Discard small objects containing fewer than %0.5 pixels
 numPixDiscard=round(sum(BWc(:))*0.005);
 BWsr(:,:,ij) = bwareaopen(BWsr(:,:,ij),numPixDiscard);
 % Measure the cross sectional area of the cell
 cellXArea=FOV*sum(sum(BWsr(:,:,ij)))/(szBWc(1,1)*szBWc(1,2));
 if cellXArea>cellMaxXArea
 cellMaxXArea=cellXArea;
 end
 % Measure cell volume
 cellVolume=cellVolume+sliceThickness*cellXArea;
end
% Discard slices which do not have cell pixels
j1=1;
for i1=1:Ns
 if sum(sum(BWsr(:,:,i1)))~=0 % if there is cell in the i1th slice
 figure, imshow(BWsr(:,:,i1));
 BWcell3d(:,:,j1)=logical(BWsr(:,:,i1));
 j1=j1+1;
 end
end
% Discard the background pixels in BWcell3d
d1=size(BWcell3d);
zIMcell3d=d1(1,3);
exIm=5; % Pad 5 pixels to the corners
IMcell3d=false(Imw+2*exIm,Imw+2*exIm,zIMcell3d);
for i1=1:zIMcell3d
 IMcell3d(exIm+1:Imwy+exIm,exIm+1:Imwx+exIm,i1)=BWcell3d(min(y):min(y)+Imwy-1,min(x):min(x)+Imwx-1,i1);
end
% Upsample using interpolation
[dx,dy,dz]=size(IMcell3d);
xr=floor(dx/2); yr=floor(dy/2); zr=floor(dz/2);
% Construct the current grid
if mod(dx,2)==0
 [X,Y,Z]=meshgrid(-xr:xr-1,-yr:yr-1,-zr:zr); % Cube centers
else
 [X,Y,Z]=meshgrid(-xr:xr,-yr:yr,-zr:zr);
end
% Check if size(X)==size(IMcell3Dbin) else pad zero plane
szx=size(X);
if szx(1,3)>dz
 IMcell3d(:,:,dz+1)=zeros(dx,dy);
end
[dx,dy,dz]=size(IMcell3d);
% Construct the interpolation grid
[xi,yi,zi] = meshgrid(-xr:0.5:xr,-yr:0.5:yr,-zr:0.125:zr);
vi = interp3(X,Y,Z,IMcell3d,xi,yi,zi,'cubic');
vi=(vi>0.2);
% Following lines skipped to reduce VSI calculation time
% x1=xr-0.25:0.5:xr+0.25;%Cube corners in x
% y1=x1;
% z1=zr-0.0625:0.125:zr+0.0625;%Cube corners in z
% C1=zeros(size(xi));
% plotCubes(x1,y1,z1,vi,C1);
%
% szVi=size(vi);
% BPIxt=max(vi,[],1);
% BPIxz=reshape(BPIxt,[szVi(1,1),szVi(1,3)]);
% BPIyt=max(vi,[],2);
% BPIyz=reshape(BPIyt,[szVi(1,1),szVi(1,3)]);
% % Put a black frame
% szBPIxz=size(BPIxz);
% BPIxzf=zeros(szBPIxz(1,1),szBPIxz(1,2)+2);
% BPIxzf(:,2:end-1)=BPIxz;
% BPIxzf=imrotate(BPIxzf,90);
% %figure;imshow(BPIxzf);title('BPIxz');
%
% szBPIyz=size(BPIyz);
% BPIlyzf=zeros(szBPIyz(1,1),szBPIyz(1,2)+2);
% BPIlyzf(:,2:end-1)=BPIyz;
% BPIlyzf=imrotate(BPIlyzf,90);
% %figure;imshow(BPIlyzf);title('BPIyz');
%
% % Show 2D cell image
% BPIxy=max(vi,[],3);
% %figure;imshow(BPIxy);title('BPIxy');
%
% % Calculate cell VSI
% VSI=fn_vsi(vi);
%
% % Calculate CSI-V
% CSI=fn_csi_v(vi);
%
% % Write data to a cell
% szVi=size(vi);
% Nz=sizeVi(1,3);
% cellInfo50(ic1,1:9)={fld fname BWc cellVolume cellMaxXArea VSI CSI Nz Ns};
% ic1
% % close
% % Clear variables
% clear A* B* C* I* M* X Y Z Px d* vi x* y* z*;
end

% Save input&output data to a an excel file
header={'Folder_name','file_names','cellMask','cellVolume [um^3'],'cellMaxXsArea[um^2]' ,'VSI3','CSI', '#cell_z_series', '#source_z_series'};
xlswrite('vsi3Meas8jun17',header,'rPLG24h');
xlswrite('vsi3Meas8jun17',cellInfo50,'rPLG24h','A2');
S1.5 Plot cubes function

function plotCubes(x,y,z,V,C)
% makes 3D plot of shape defined by logical 3d-matrix V, with the color
% the small cubes given by the similar shaped matrix C
% x, y and z are vectors indicating the edge locations, so their lengths
% should be one larger than the corresponding dimension of the matrices

% Reference:
% http://www.mathworks.com/matlabcentral/newsreader/view_thread/236226
% Subject: 3D plot of solid object built from tiny cubes
% Accessed on: 03.05.2016
% Author: Bas

[nx,ny,nz] = size(V);
if length(x) ~= nx + 1 | length(y) ~= ny + 1 | length(z) ~= nz + 1
 error('Length of x, y and z must be one larger than size of V and C')
end

dc = 0.02 * (max(C(V)) - min(C(V))); % small color difference to create 3D effect

% -X
ilin = find(cat(1, V(1,:,:), ~V(1:end-1,:,:) & V(2:end,:,:)));
[ix,iy,iz] = ind2sub([nx,ny,nz], ilin);
px = repmat(x(ix), 4, 1);
py = [y(iy); y(iy); y(iy+1); y(iy+1)];
pz = [z(iz); z(iz+1); z(iz+1); z(iz)];
c = C(ilin);

% -Y
ilin = find(cat(2, V(:,1,:), ~V(:,1:end-1,:) & V(:,2:end,:)));
[ix,iy,iz] = ind2sub([nx,ny,nz], ilin);
px = [px, [x(ix); x(ix); x(ix+1); x(ix+1)]';
py = [py, repmat(y(iy), 4, 1)];
pz = [pz, [z(iz); z(iz+1); z(iz+1); z(iz)]];
c = [c, C(ilin) + dc];

% -Z
ilin = find(cat(3, V(:,:,1), ~V(:,:,1:end-1) & V(:,:,2:end)));
[ix,iy,iz] = ind2sub([nx,ny,nz], ilin);
px = [px, [x(ix); x(ix); x(ix+1); x(ix+1)]';
py = [py, y(iy); y(iy+1); y(iy+1); y(iy)];
pz = [pz, repmat(z(iz), 4, 1)];
c = [c, C(ilin) - dc];

% +X
ilin = find(cat(1, V(1:end-1,:,:), ~V(2:end,:,:), V(end,:,:)));
[ix,iy,iz] = ind2sub([nx,ny,nz], ilin);
px = [px, repmat(x(ix+1), 4, 1)];
py = [py, [y(iy); y(iy); y(iy+1); y(iy+1)]];
pz = [pz, [z(iz); z(iz+1); z(iz+1); z(iz)]];
c = [c, C(ilin)];
ilin = find(cat(2, V(:,1:end-1,:) & ~V(:,2:end,:), V(:,end,:)))';
[ix,iy,iz] = ind2sub([nx,ny,nz], ilin);
px = [px, [x(ix); x(ix); x(ix+1); x(ix+1)]];
py = [py, repmat(y(iy+1), 4, 1)];
pz = [pz, repmat(z(iz+1), 4, 1)];
c = [c, C(ilin) + dc];

ilin = find(cat(3, V(:,:,1:end-1) & ~V(:,:,2:end), V(:,:,end)))';
[ix,iy,iz] = ind2sub([nx,ny,nz], ilin);
px = [px, [x(ix); x(ix); x(ix+1); x(ix+1)]];
py = [py, repmat(y(iy+1); y(iy+1); y(iy+1)];
 pz = [pz, repmat(z(iz+1), 4, 1)];
c = [c, C(ilin) - dc];

figure;
patch(px,py,pz,c)

axis equal vis3d
shading faceted; %dc can be set to zero when using faceted

end
S2. Two-way ANOVA
Dependent variable: VSI

Two independent variables: Cell culture material type and cell immunoreactivity level

Replication: 50

Number of groups: 8

1. Each sample is an independent random sample.

2. The distribution of the response variable follows a normal distribution. The normal probability plots of VSI of quiescent- and reactive-like astrocytes (Q and R) cultured on Aclar (ACL), PLL Aclar (PLA), PLL glass (PLG) and nanofibrillar scaffolds (NF) are:
3. The largest sample standard deviation divided by the smallest sample standard deviation is 1.512, so the population variances are equal across responses for the group levels.

A 4(Cell culture material type: PLL glass, Aclar, PLL Aclar, nanofibrillar scaffolds) x 2(immunoreactivity level: quiescent-like vs. reactive-like) between subjects ANOVA was conducted to study VSI differences between material type as a function of immunoreactivity level.

Two-way ANOVA Hypotheses

Hypothesis 1

H_0: Astrocyte reactivity level will have no significant effect on VSI.

Hypothesis 2

H_0: Cell culture material type will have no significant effect on VSI.
Hypothesis 3

H₀: Material type and astrocyte reactivity level interaction will have no significant effect on VSI.

Descriptive Statistics

Dependent Variable: VSI

<table>
<thead>
<tr>
<th>Material type</th>
<th>Reactivity</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aclar</td>
<td>Quiescent-like</td>
<td>.7100</td>
<td>.06837</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Reactive-like</td>
<td>.6110</td>
<td>.10335</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.6605</td>
<td>.10036</td>
<td>100</td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>Quiescent-like</td>
<td>.7583</td>
<td>.07332</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Reactive-like</td>
<td>.7647</td>
<td>.06942</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.7615</td>
<td>.07111</td>
<td>100</td>
</tr>
<tr>
<td>PLL Glass</td>
<td>Quiescent-like</td>
<td>.7224</td>
<td>.07223</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Reactive-like</td>
<td>.6971</td>
<td>.08548</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.7098</td>
<td>.07975</td>
<td>100</td>
</tr>
<tr>
<td>Nanofibrillar scaffolds</td>
<td>Quiescent-like</td>
<td>.7126</td>
<td>.09191</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Reactive-like</td>
<td>.6745</td>
<td>.10242</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.6935</td>
<td>.09869</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Quiescent-like</td>
<td>.7258</td>
<td>.07883</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td>Reactive-like</td>
<td>.6868</td>
<td>.10597</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.7063</td>
<td>.09530</td>
<td>400</td>
</tr>
</tbody>
</table>
Tests of Between-Subjects Effects

Dependent Variable: VSI

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>.830<sup>a</sup></td>
<td>7</td>
<td>.119</td>
<td>16.635</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>199.558</td>
<td>1</td>
<td>199.558</td>
<td>28002.142</td>
<td>.000</td>
</tr>
<tr>
<td>Material_type</td>
<td>.532</td>
<td>3</td>
<td>.177</td>
<td>24.874</td>
<td>.000</td>
</tr>
<tr>
<td>Reactivity</td>
<td>.152</td>
<td>1</td>
<td>.152</td>
<td>21.322</td>
<td>.000</td>
</tr>
<tr>
<td>Material_type * Reactivity</td>
<td>.146</td>
<td>3</td>
<td>.049</td>
<td>6.834</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>2.794</td>
<td>392</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>203.182</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>3.623</td>
<td>399</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All null hypotheses were rejected because all P values are less than 0.05. Both reactivity level (Q/R) and material type (acl/nf/pla/plg) have significant effects on VSI. Material type and reactivity level interaction has a significant effect on VSI.
Pairwise Comparisons

Dependent Variable: VSI

<table>
<thead>
<tr>
<th>(I) Material type</th>
<th>(J) Material type</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Aclar</td>
<td>PLL Aclar</td>
<td>-0.101*</td>
<td>0.012</td>
<td>0.000</td>
<td>(-0.124)</td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Glass</td>
<td>-0.049*</td>
<td>0.012</td>
<td>0.000</td>
<td>(-0.073)</td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>Nanofibrillar scaffolds</td>
<td>-0.033*</td>
<td>0.012</td>
<td>0.006</td>
<td>(-0.056)</td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>Aclar</td>
<td>0.101*</td>
<td>0.012</td>
<td>0.000</td>
<td>(0.078)</td>
</tr>
<tr>
<td>PLL Glass</td>
<td>PLL Glass</td>
<td>0.052*</td>
<td>0.012</td>
<td>0.000</td>
<td>(0.028)</td>
</tr>
<tr>
<td>PLL Glass</td>
<td>Nanofibrillar scaffolds</td>
<td>0.068*</td>
<td>0.012</td>
<td>0.000</td>
<td>(0.045)</td>
</tr>
<tr>
<td>PLL Glass</td>
<td>Aclar</td>
<td>0.049*</td>
<td>0.012</td>
<td>0.000</td>
<td>(0.026)</td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Aclar</td>
<td>-0.052*</td>
<td>0.012</td>
<td>0.000</td>
<td>(-0.075)</td>
</tr>
<tr>
<td>PLL Glass</td>
<td>Nanofibrillar scaffolds</td>
<td>0.016</td>
<td>0.012</td>
<td>0.174</td>
<td>(-0.007)</td>
</tr>
<tr>
<td>PLL Glass</td>
<td>Aclar</td>
<td>0.033*</td>
<td>0.012</td>
<td>0.006</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Nanofibrillar scaffolds</td>
<td>PLL Aclar</td>
<td>-0.068*</td>
<td>0.012</td>
<td>0.000</td>
<td>(-0.091)</td>
</tr>
<tr>
<td>Nanofibrillar scaffolds</td>
<td>PLL Glass</td>
<td>-0.016</td>
<td>0.012</td>
<td>0.174</td>
<td>(-0.040)</td>
</tr>
</tbody>
</table>
Pairwise Comparisons

Dependent Variable: VSI

<table>
<thead>
<tr>
<th>(I) Reactivity</th>
<th>(J) Reactivity</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.(^b)</th>
<th>95% Confidence Interval for Difference(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescent-like</td>
<td>Reactive-like</td>
<td>.039(^*)</td>
<td>.008</td>
<td>.000</td>
<td>.022 - .056</td>
</tr>
<tr>
<td>Reactive-like</td>
<td>Quiescent-like</td>
<td>-.039(^*)</td>
<td>.008</td>
<td>.000</td>
<td>-.056 - -.022</td>
</tr>
</tbody>
</table>

Based on estimated marginal means

\(^*\) The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).
Pairwise Comparisons

Dependent Variable: VSI

<table>
<thead>
<tr>
<th>Reactivity</th>
<th>(I) Material type</th>
<th>(J) Material type</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig. b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiescent-like</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Glass</td>
<td>-.048*</td>
<td>.017</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>Aclar</td>
<td>PLL Glass</td>
<td>-.012</td>
<td>.017</td>
<td>.462</td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>Nanofibrillar scaffolds</td>
<td>-.003</td>
<td>.017</td>
<td>.880</td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>Acclar</td>
<td>.048*</td>
<td>.017</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>PLL Glass</td>
<td>PLL Aclar</td>
<td>.036*</td>
<td>.017</td>
<td>.034</td>
<td></td>
</tr>
<tr>
<td>PLL Glass</td>
<td>Nanofibrillar scaffolds</td>
<td>.046*</td>
<td>.017</td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td>PLL Glass</td>
<td>Acclar</td>
<td>.012</td>
<td>.017</td>
<td>.462</td>
<td></td>
</tr>
<tr>
<td>Nanofibrillar scaffolds</td>
<td>PLL Aclar</td>
<td>-.036*</td>
<td>.017</td>
<td>.034</td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Glass</td>
<td>-.010</td>
<td>.017</td>
<td>.559</td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Aclar</td>
<td>-.154*</td>
<td>.017</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Glass</td>
<td>-.086*</td>
<td>.017</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Aclar</td>
<td>.068*</td>
<td>.017</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Glass</td>
<td>.090*</td>
<td>.017</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Glass</td>
<td>.086*</td>
<td>.017</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Reactive-like</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>PLL Aclar</td>
<td>-.068*</td>
<td>.017</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>PLL Glass</td>
<td>PLL Aclar</td>
<td>.023</td>
<td>.017</td>
<td>.181</td>
<td></td>
</tr>
<tr>
<td>PLL Glass</td>
<td>PLL Aclar</td>
<td>.063*</td>
<td>.017</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>PLL Glass</td>
<td>PLL Glass</td>
<td>-.090*</td>
<td>.017</td>
<td>.000</td>
<td></td>
</tr>
</tbody>
</table>
Pairwise Comparisons

Dependent Variable: VSI

<table>
<thead>
<tr>
<th>Material type</th>
<th>(I) Reactivity</th>
<th>(J) Reactivity</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig. ^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aclar</td>
<td>Quiescent-like</td>
<td>Reactive-like</td>
<td>0.099 ^*</td>
<td>0.017</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Reactive-like</td>
<td>Quiescent-like</td>
<td>-0.099 ^*</td>
<td>0.017</td>
<td>0.000</td>
</tr>
<tr>
<td>PLL Aclar</td>
<td>Quiescent-like</td>
<td>Reactive-like</td>
<td>-0.006</td>
<td>0.017</td>
<td>0.705</td>
</tr>
<tr>
<td></td>
<td>Reactive-like</td>
<td>Quiescent-like</td>
<td>0.006</td>
<td>0.017</td>
<td>0.705</td>
</tr>
<tr>
<td>PLL Glass</td>
<td>Quiescent-like</td>
<td>Reactive-like</td>
<td>0.025</td>
<td>0.017</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>Reactive-like</td>
<td>Quiescent-like</td>
<td>-0.025</td>
<td>0.017</td>
<td>0.135</td>
</tr>
<tr>
<td>Nanofibrillar scaffolds</td>
<td>Quiescent-like</td>
<td>Reactive-like</td>
<td>0.038 ^*</td>
<td>0.017</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>Reactive-like</td>
<td>Quiescent-like</td>
<td>-0.038 ^*</td>
<td>0.017</td>
<td>0.025</td>
</tr>
</tbody>
</table>
S3. VSI and CSI-V comparison of astrocytes using representative binary projection images

S3.1 Quiescent-like versus reactive-like astrocytes on Aclar

![Images of quiescent and reactive astrocytes on Aclar](image)

Figure 1. VSI and CSI-V comparison of quiescent- and reactive-like astrocytes cultured on Aclar. Quiescent-like astrocytes on Aclar are more spread than the reactive-like astrocytes on Aclar. VSI successfully quantifies the cell spreading. R stands for reactive-like astrocyte; Q stands for quiescent-like astrocyte; ACL stands for Aclar; BPI stands for binary projection image; XY, YZ, and XY stand for the image projection planes. Scale bars show 20 µm.
S3.2 Quiescent-like versus reactive-like astrocytes on nanofibrillar scaffolds

Figure 2. VSI and CSI-V comparison of quiescent- and reactive-like astrocytes cultured on nanofibrillar scaffolds. Quiescent-like astrocytes on nanofibrillar scaffolds are more spread than the reactive-like astrocytes. R stands for reactive-like astrocyte; Q stands for quiescent-like astrocyte; ACL stands for Aclar; PLA stands for PLL Aclar; BPI stands for binary projection image; XY, YZ, and XY stand for the image projection planes. Scale bars show 20 μm.
S3.3 Quiescent-like astrocytes on PLL Aclar versus ones on Aclar

Figure 3. VSI and CSI-V comparison of quiescent-like astrocytes cultured on PLL Aclar and Aclar. Quiescent-like astrocytes on PLL Aclar are more spread than the ones on Aclar. R stands for reactive-like astrocyte; Q stands for quiescent-like astrocyte; ACL stands for Aclar; PLA stands for PLL Aclar; BPI stands for binary projection image; XY, YZ, and XY stand for the image projection planes. Scale bars show 20 µm.
S3.4 Reactive-like astrocytes on PLL Aclar versus reactive-like astrocytes on Aclar

Figure 4. VSI and CSI-V comparison of reactive-like astrocytes cultured on PLL Aclar and Aclar. Reactive-like astrocytes on PLL Aclar are more spread than the ones on Aclar. R stands for reactive-like astrocyte; Q stands for quiescent-like astrocyte; ACL stands for Aclar; PLA stands for PLL Aclar; BPI stands for binary projection image; XY, YZ, and XY stand for the image projection planes. Scale bars show 20 μm.
S3.5 Reactive-like astrocytes on PLL Glass versus reactive-like astrocytes on Aclar

Figure 5. VSI and CSI-V comparison of reactive-like astrocytes cultured on PLL Glass and Aclar. Reactive-like astrocytes on PLL Glass are more spread than the ones on Aclar. R stands for reactive-like astrocyte; Q stands for quiescent-like astrocyte; ACL stands for Aclar; PLG stands for PLL Glass; BPI stands for binary projection image; XY, YZ, and XY stand for the image projection planes. Scale bars show 20 μm.
S3.6 Reactive-like astrocytes on nanofibrillar scaffolds versus ones on PLL Aclar

Figure 6. VSI and CSI-V comparison of reactive-like astrocytes cultured on nanofibrillar scaffolds and reactive-like astrocytes on Aclar. Reactive-like astrocytes on nanofibrillar scaffolds are less spread than the ones on PLL Aclar. R stands for reactive-like astrocyte; Q stands for quiescent-like astrocyte; PLA stands for PLL Aclar; NF stands for nanofibrillar scaffolds; BPI stands for binary projection image; XY, YZ, and XY stand for the image projection planes. Scale bars show 20 µm.